UOJ Logo yldyz的博客

博客

#1400结论证明

2023-03-27 12:23:11 By yldyz

我们设 $A(0,1),B(0,-1),C(x_1,y_1),D(x_2,y_2)$ ,并记 $l_1=x_1^2+y_1^2-1,l_2=x_2^2+y_2^2-1$ 。

同时记 $AB^{-1}$ 表示 $AB$ 的垂直平分线。

则 $y_{AB^{-1}}=0,y_{CD^{-1}}=-\frac{x_1-x_2}{y_1-y_2}+\frac{l_1-l_2}{2(y_1-y_2)},y_{AC^{-1}}=-\frac{x_1}{y_1-1}+\frac{l_1}{2(y_1-1)},y_{BC^{-1}}=-\frac{x_1}{y_1+1}+\frac{l_1}{2(y_1+1)},y_{AD^{-1}}=-\frac{x_2}{y_2-1}+\frac{l_2}{2(y_2-1)},y_{BD^{-1}}=-\frac{x_2}{y_2+1}+\frac{l_2}{2(y_2-1)}$

我们把四个外接圆和三个非外接圆圆心的垂直平分线交点的情况分别讨论:

$ 1、\odot ABC\ 和\ \odot ABD$

设 $\odot ABC$ 圆心为 $ O_1=(b,0)$ , $OA=1,CE=y_1,OO_1=b,O_1E=x_1-b,AO_1=CO_1$ 。

$\therefore AO^2+OO_1^2=O_1E^2+CE^2 \ 即:1^2+b^2=(x_1-b)^2+y_1^2$ ,解得 $b=\frac{l_1}{2x_1}$ 。

故 $S_1=(\frac{l_1}{2x_1}-x_2)^2+y_2^2-(\frac{l_1}{2x_1})^2-1=\frac{\left\vert l_1x_2-x_1l_2\right\vert}{\left\vert x_1\right\vert}$ ,同理可得对于 $ \odot ABD,S_2=\frac{\left\vert l_1x_2-x_1l_2\right\vert}{\left\vert x_2\right\vert}$

$2、\odot ACD\ 和\ \odot BCD$

设 $\odot ACD$ 圆心为 $O_3=(x_3,y_3)$ 由 $y_{AC^{-1}}$ 和 $y_{AD^{-1}}$ ,联立得 $\begin{cases}2(y_1-1)y_3=-2x_1x_3+l_1\\2(y_2-1)y_3=-2x_2x_3+l_2\end{cases}$ ,解得 $\begin{cases}x_3=\frac{l_1(y_2-1)-l_2(y_1-1)}{2[x_2(y_1-1)-x_1(y_2-1)]}\\y_3=\frac{l_1x_2-l_2x_1}{2[x_2(y_1-1)-x_1(y_2-1)]}\end{cases}$

$\therefore S_3=\left\vert x_3^2+(y_3+1)^2-x_3^2-(y_3-1)^2 \right\vert=4\left\vert y_3 \right\vert=\frac{2\left\vert l_1x_2-l_2x_1\right\vert}{\left\vert x_2(y_1-1)-x_1(y_2-1)\right\vert}$ ,同理可得 $S_4=\frac{2\left\vert l_1x_2-l_2x_1\right\vert}{\left\vert x_2(y_1+1)-x_1(y_2+1)\right\vert}$。

$3、AB^{-1} \times CD^{-1}$

记两线交点为 $E_1(\frac{l_1-l_2}{2(x_1-x_2)},0)$ ,故 $S_5=2\left\vert AE_1^2-CE_1^2 \right\vert=2\left\vert(\frac{l_1-l_2}{2(x_1-x_2)})^2+1^2-(\frac{l_1-l_2}{2(x_1-x_2)}-x_1)^2-y_1^2\right\vert=\frac{2\left\vert l_1x_2-l_2x_1 \right\vert}{\left\vert x_1-x_2\right\vert}$ 。

$4、AD^{-1} \times BC^{-1}\ 和\ AC^{-1} \times BD^{-1}$

记前两线交于 $E_2$ ,后两线交于 $E_3$ 。则 $S_6=2\left\vert x_{E_2}^2+(y_{E_2}-1)^2-x_{E_2}^2-(y_{E_2}+1)^2\right\vert=8\left\vert y_{E_2}\right\vert,S_7=8\left\vert y_{E_3}\right\vert$ 。

联立方程解得 $y_{E_2}=\frac{l_1x_2-l_2x_1}{2[x_2(y_1+1)-x_1(y_2-1)]},y_{E_2}=\frac{l_1x_2-l_2x_1}{2[x_2(y_1-1)-x_1(y_2+1)]}$。

所以 $S_6=\frac{4\left\vert l_1x_2-l_2x_1\right\vert}{\left\vert x_2(y_1+1)-x_1(y_2-1)\right\vert},S_7=\frac{4\left\vert l_1x_2-l_2x_1\right\vert}{\left\vert x_2(y_1-1)-x_1(y_2+1)\right\vert}$

发现所有结果形式均有 $\left\vert l_1x_2-l_2x_1\right\vert$ ,约去后取倒数平方。

$S_1=x_1^2, S_2=x_2^2, S_3=(\frac{x_2(y_1-1)-x_1(y_2-1)}{2})^2,S_4=(\frac{x_2(y_1+1)-x_1(y_2+1)}{2})^2,S_5=(\frac{x_1-x_2}{2})^2,S_6=(\frac{x_2(y_1+1)-x_1(y_2-1)}{4})^2,S_7=(\frac{x_2(y_1-1)-x_1(y_2+1)}{4})^2$

所需证明为 $\max(S_1,S_2,S_3,S_4) \geq \max(S_5,S_6,S_7) $ 。

首先,引入一个引理: $ \max(a,b)=\frac{1}{2}(a+b+\left\vert a-b\right\vert)$ (显然成立)

$\therefore S_8=\max(S_3,S_4)=(\frac{x_2y_1-x_1y_2}{2})^2+(\frac{x_1-x_2}{2})^2+2\left\vert \frac{x_1-x_2}{2}\times \frac{x_2y_1-x_1y_2}{2}\right\vert =(\left\vert \frac{x_1-x_2}{2}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{2}\right\vert)^2\geq S_5$

$S_9=\max(S_6,S_7)=(\frac{x_2y_1-x_1y_2}{4})^2+(\frac{x_1+x_2}{4})^2+2\left\vert \frac{x_1+x_2}{4}\times \frac{x_2y_1-x_1y_2}{4}\right\vert =(\left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert)^2$

因此,所需证明变为 $\max(S_1,S_2,S_8) \geq S_9$ 。接下来假设 $S_9>S_8$ 且 $S_9 > \max(S_1,S_2)$ :

则 $S_9-S_8=(\left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert+\left\vert \frac{x_1-x_2}{2}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{2}\right\vert)(\left\vert \frac{x_1-x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert-\left\vert \frac{x_1-x_2}{2}\right\vert-\left\vert \frac{x_2y_1-x_1y_2}{2}\right\vert)>0$

$\because \left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert+\left\vert \frac{x_1-x_2}{2}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{2}\right\vert>0$

$\therefore \left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert-\left\vert \frac{x_1-x_2}{2}\right\vert-\left\vert \frac{x_2y_1-x_1y_2}{2}\right\vert>0$

$\therefore \left\vert x_1+x_2\right\vert+\left\vert x_2y_1-x_1y_2\right\vert<2(\left\vert x_1+x_2\right\vert-\left\vert x_1-x_2\right\vert)$

$S_9-\max(S_1,S_2)=(\left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert-\max(\left\vert x_1\right\vert,\left\vert x_2\right\vert))(\left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert+\max(\left\vert x_1\right\vert,\left\vert x_2\right\vert)))$

$\because \left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert+\max(\left\vert x_1\right\vert,\left\vert x_2\right\vert)>0$

$\therefore \left\vert \frac{x_1+x_2}{4}\right\vert+\left\vert \frac{x_2y_1-x_1y_2}{4}\right\vert-\max(\left\vert x_1\right\vert,\left\vert x_2\right\vert)>0$

$\therefore \left\vert x_1+x_2\right\vert+\left\vert x_2y_1-x_1y_2\right\vert>4\max(\left\vert x_1\right\vert,\left\vert x_2\right\vert)=2(\left\vert x_1\right\vert+\left\vert x_2\right\vert+\left\vert \left\vert x_1\right\vert-\left\vert x_2\right\vert\right\vert)$

$\therefore \left\vert x_1\right\vert+\left\vert x_2\right\vert-\left\vert \left\vert x_1\right\vert-\left\vert x_2\right\vert\right\vert \leq \left\vert x_1\right\vert+\left\vert x_2\right\vert+\left\vert \left\vert x_1\right\vert-\left\vert x_2\right\vert\right\vert<\left\vert x_1+x_2\right\vert-\left\vert x_1-x_2\right\vert$

若 $x_1x_2>0$ ,则左式等于右式,矛盾!

若 $x_1x_2<0$ ,则不妨设 $x_1>0>x_2$ ,左式为 $x_1-x_2-\left\vert x_1+x_2\right\vert$ ,右式为 $\left\vert x_1+x_2\right\vert-x_1+x_2$ 。

由于 $x_1-x_2>\left\vert x_1+x_2\right\vert$ ,故左式 $>$ 右式,矛盾!

所以,取外接圆一定不劣于取垂直平分线交点。证毕!

评论

qinyubo
orz
hjxhjx
Orz
CJ_wyz
@CJ_wyz@zqyyy@acceptedzhs ,快来学习
Reliauk
@WSDman 给你一点小小的中国震撼!
acceptedzhs
orz
Ziqqurat
@ClHg2 快来学习
Ziqqurat
@larryyu 给你一点小小的中国震撼!

发表评论

可以用@mike来提到mike这个用户,mike会被高亮显示。如果你真的想打“@”这个字符,请用“@@”。